Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(3): e0193123, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376171

RESUMO

White-rot fungi employ secreted carbohydrate-active enzymes (CAZymes) along with reactive oxygen species (ROS), like hydrogen peroxide (H2O2), to degrade lignocellulose in wood. H2O2 serves as a co-substrate for key oxidoreductases during the initial decay phase. While the degradation of lignocellulose by CAZymes is well documented, the impact of ROS on the oxidation of the secreted proteins remains unclear, and the identity of the oxidized proteins is unknown. Methionine (Met) can be oxidized to Met sulfoxide (MetO) or Met sulfone (MetO2) with potential deleterious, antioxidant, or regulatory effects. Other residues, like proline (Pro), can undergo carbonylation. Using the white-rot Pycnoporus cinnabarinus grown on aspen wood, we analyzed the Met content of the secreted proteins and their susceptibility to oxidation combining H218O2 with deep shotgun proteomics. Strikingly, their overall Met content was significantly lower (1.4%) compared to intracellular proteins (2.1%), a feature conserved in fungi but not in metazoans or plants. We evidenced that a catalase, widespread in white-rot fungi, protects the secreted proteins from oxidation. Our redox proteomics approach allowed the identification of 49 oxidizable Met and 40 oxidizable Pro residues within few secreted proteins, mostly CAZymes. Interestingly, many of them had several oxidized residues localized in hotspots. Some Met, including those in GH7 cellobiohydrolases, were oxidized up to 47%, with a substantial percentage of sulfone (13%). These Met are conserved in fungal homologs, suggesting important functional roles. Our findings reveal that white-rot fungi safeguard their secreted proteins by minimizing their Met content and by scavenging ROS and pinpoint redox-active residues in CAZymes.IMPORTANCEThe study of lignocellulose degradation by fungi is critical for understanding the ecological and industrial implications of wood decay. While carbohydrate-active enzymes (CAZymes) play a well-established role in lignocellulose degradation, the impact of hydrogen peroxide (H2O2) on secreted proteins remains unclear. This study aims at evaluating the effect of H2O2 on secreted proteins, focusing on the oxidation of methionine (Met). Using the model white-rot fungi Pycnoporus cinnabarinus grown on aspen wood, we showed that fungi protect their secreted proteins from oxidation by reducing their Met content and utilizing a secreted catalase to scavenge exogenous H2O2. The research identified key oxidizable Met within secreted CAZymes. Importantly, some Met, like those of GH7 cellobiohydrolases, undergone substantial oxidation levels suggesting important roles in lignocellulose degradation. These findings highlight the adaptive mechanisms employed by white-rot fungi to safeguard their secreted proteins during wood decay and emphasize the importance of these processes in lignocellulose breakdown.


Assuntos
Basidiomycota , Peróxido de Hidrogênio , Polyporaceae , Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Madeira/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Basidiomycota/metabolismo , Oxirredução , Celulose 1,4-beta-Celobiosidase/metabolismo , Carboidratos , Metionina/metabolismo , Sulfonas/metabolismo
2.
Chembiochem ; 25(3): e202300781, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117648

RESUMO

Heterogeneous chemoenzymatic catalysts differing in their spatial organization and relative orientation of their enzymatic laccase and Pd units confined into macrocellular silica foams were tested on veratryl alcohol oxidation. When operating under continuous flow, we show that the catalytic efficiency of hybrids is significantly enhanced when the Pd(II) complex is combined with a laccase exhibiting a surface located lysine next to the T1 oxidation site of the enzyme.


Assuntos
Lacase , Lacase/metabolismo , Oxirredução , Conformação Molecular
3.
Chempluschem ; 88(5): e202300156, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37145031

RESUMO

This study investigates the site-directed immobilization of a hybrid catalyst bearing a biquinoline-based-Pd(II) complex (1) and a robust laccase within cavities of a silica foam to favor veratryl alcohol oxidation. We performed the grafting of 1 at a unique surface located lysine of two laccase variants, either at closed (1⊂UNIK157 ) or opposite position (1⊂UNIK71 ) of the enzyme oxidation site. After immobilization into the cavities of silica monoliths bearing hierarchical porosity, we show that catalytic activity is dependent on the orientation and loading of each hybrid, 1⊂UNIK157 being twice as active than 1⊂UNIK71 (203 TON vs 100 TON) when operating under continuous flow. These systems can be reused 5 times, with an operational activity remaining as high as 40 %. We show that the synergy between 1 and laccase can be tuned within the foam. This work is a proof of concept for controlling the organization of a heterogeneous hybrid catalyst using a Pd/laccase/silica foam.

4.
Chem Sci ; 13(42): 12332-12339, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349273

RESUMO

Coupling a photoredox module and a bio-inspired non-heme model to activate O2 for the oxygen atom transfer (OAT) reaction requires a vigorous investigation to shed light on the multiple competing electron transfer steps, charge accumulation and annihilation processes, and the activation of O2 at the catalytic unit. We found that the efficient oxidative quenching mechanism between a [Ru(bpy)3]2+ chromophore and a reversible electron mediator, methyl viologen (MV2+), to form the reducing species methyl viologen radical (MV˙+) can convey an electron to O2 to form the superoxide radical and reset an Fe(iii) species in a catalytic cycle to the Fe(ii) state in an aqueous solution. The formation of the Fe(iii)-hydroperoxo (FeIII-OOH) intermediate can evolve to a highly oxidized iron-oxo species to perform the OAT reaction to an alkene substrate. Such a strategy allows us to bypass the challenging task of charge accumulation at the molecular catalytic unit for the two-electron activation of O2. The FeIII-OOH catalytic precursor was trapped and characterized by EPR spectroscopy pertaining to a metal assisted catalysis. Importantly, we found that the substrate itself can act as an electron donor to reset the photooxidized chromophore in the initial state closing the photocatalytic loop and hence excluding the use of a sacrificial electron donor. Laser Flash Photolysis (LFP) studies and spectroscopic monitoring during photocatalysis lend credence to the proposed catalytic cycle.

5.
BMC Bioinformatics ; 23(1): 313, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918655

RESUMO

BACKGROUND: DIRs are mysterious protein that have the ability to scavenge free radicals, which, are highly reactive with molecules in their vicinity. What is even more fascinating is that they carry out from these highly unstable species, a selective reaction (i.e., stereoenantioselective) from a well-defined substrate to give a very precise product. Unfortunately, to date, only three products have been demonstrated following studies on DIRs from the plant world, which until now was the kingdom where these proteins had been demonstrated. Within this kingdom, each DIR protein has its own type of substrate. The products identified to date, have on the other hand, a strong economic impact: in agriculture for example, the biosynthesis of (+)-gossypol could be highlighted (a repellent antifood produced by the cotton plant) by the DIRs of cotton. In forsythia plant species, it is the biosynthesis of (-)-pinoresinol, an intermediate leading to the synthesis of podophyllotoxine (a powerful anicancerous agent) which has been revealed. Recently, a clear path of study, potentially with strong impact, appeared by the hypothesis of the potential existence of protein DIR within the genomes of prokaryotes. The possibility of working with this type of organism is an undeniable advantage: since many sequenced genomes are available and the molecular tools are already developed. Even easier to implement and working on microbes, of less complex composition, offers many opportunities for laboratory studies. On the other hand, the diversity of their environment (e.g., soil, aquatic environments, extreme environmental conditions (pH, temperature, pressure) make them very diverse and varied subjects of study. Identifying new DIR proteins from bacteria means identifying new substrate or product molecules from these organisms. It is the promise of going further in understanding the mechanism of action of these proteins and this will most likely have a strong impact in the fields of agricultural, pharmaceutical and/or food chemistry. RESULTS: Our goal is to obtain as much information as possible about these proteins to unlock the secrets of their exceptional functioning. Analyzes of structural and functional genomic data led to the identification of the Pfam PF03018 domain as characteristic of DIR proteins. This domain has been further identified in the sequence of bacterial proteins therefore named as DIR-like (DIRL). We have chosen a multidisciplinary bioinformatic approach centered on bacterial genome identification, gene expression and regulation signals, protein structures, and their molecular information content. The objective of this study was to perform a thorough bioinformatic analysis on these DIRLs to highlight any information leading to the selection of candidate bacteria for further cloning, purification, and characterization of bacterial DIRs. CONCLUSIONS: From studies of DIRL genes identification, primary structures, predictions of their secondary and tertiary structures, prediction of DIRL signals sequences, analysis of their gene organization and potential regulation, a list of primary bacterial candidates is proposed.


Assuntos
Biologia Computacional , Proteínas de Plantas , Genoma Bacteriano , Humanos , Proteínas de Plantas/metabolismo
6.
Analyst ; 147(11): 2515-2522, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35543191

RESUMO

1D 1H NMR spectroscopy has been widely used to monitor enzymatic activity by recording the evolution of the spectra of substrates and/or products, thanks to the linear response of NMR. For complex systems involving the coexistence of multiple compounds (substrate, final product and various intermediates), the identification and quantification can be a more arduous task. Here, we present a simple analytical method for the rapid characterization of reaction mixtures involving enzymatic complexes using Maximum Quantum (MaxQ) NMR, accelerated with the Non-Uniform Sampling (NUS) acquisition procedure. Specifically, this approach enables, in the first analytical step, the counting of the molecules present in the samples. We also show, using two different enzymatic systems, that the implementation of these pulse sequences implies precautions related to the short relaxation times due to the presence of metallo-enzymes or paramagnetic catalysts. Finally, the combination of MaxQ and diffusion experiments, which leads to a 3D chart, greatly improves the resolution and offers an extreme simplification of the spectra while giving valuable indications on the affinity of the enzymes to the different compounds present in the reaction mixture.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos
7.
Colloids Surf B Biointerfaces ; 206: 111963, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34293579

RESUMO

We explored the coupling of laccases to magnetic nanoparticles (MNPs) with different surface chemical coating. Two laccase variants offering two opposite and precise orientations of the substrate oxidation site were immobilised onto core-shell MNPs presenting either aliphatic aldehyde, aromatic aldehyde or azide functional groups at the particles surface. Oxidation capabilities of the six-resulting laccase-MNP hybrids were compared on ABTS and coniferyl alcohol. Herein, we show that the original interfaces created differ substantially in their reactivities with an amplitude from 1 to > 4 folds depending on the nature of the substrate. Taking enzyme orientation into account in the design of surface modification represents a way to introduce selectivity in laccase catalysed reactions.


Assuntos
Lacase , Nanopartículas de Magnetita , Catálise , Lacase/genética , Lacase/metabolismo , Magnetismo , Oxirredução
8.
Biotechnol Rep (Amst) ; 31: e00645, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34189063

RESUMO

We immobilized a fungal laccase with only two spatially close lysines available for functionalization into macrocellular Si(HIPE) monoliths for the purpose of continuous flow catalysis. Immobilization (30-45 % protein immobilization yields) was obtained using a covalent bond forming reaction between the enzyme and low glutaraldehyde (0.625 % (w/w)) functionalized foams. Testing primarily HBT-mediated RB5 dye decolorization in continuous flow reactors, we show that the activity of the heterogeneous catalyst is comparable to its homogeneous counterpart. More, its operational activity remains as high as 60 % after twelve consecutive decolorization cycles as well as after one-year storage, performances remarkable for such a material. We further immobilized two variants of the laccase containing a unique lysine: one located in the vicinity of the substrate oxidation site (K157) and one at the opposite side of this oxidation site (K71) to study the effect of the proximity of the Si(HIPE) surface on enzyme activity. Comparing activities on different substrates for monoliths with differentially oriented catalysts, we show a twofold discrimination for ABTS relative to ascorbate. This study provides ground for the development of neo-functionalized materials that beyond allowing stability and reusability will become synergic partners in the catalytic process.

9.
Food Res Int ; 145: 110418, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34112421

RESUMO

Aflatoxin B1 (AFB1) is the most harmful mycotoxin and presents risks to human health. Utilization of enzyme to degrade AFB1 is a promising strategy to overcome this problem. In this study, we evaluated the effect of recombinant laccase expressed in Saccharomyces cerevisiae on the degradation of AFB1. It was found that AFB1 could be degraded effectively by laccase up to 91%.The results of ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) showed that there were four main degradation products of AFB1 including C16H22O4, C14H16N2O2, C7H12N6O and C24H30O6. Two possible degradation pathways were proposed: 1) AFB1 lost -CO continuously, and then double bonds of furan ring were broken after reactions with H2O, H+, and -NH2; 2) AFB1 occurred decarbonylation reaction after losing -CO and double bonds were broken by additional reaction with H+. Two toxicological activity sites in AFB1, including a double bond of furo-furan ring and lactone ring in the coumarin in moiety, were destroyed. The toxicity of AFB1 degradation products was evaluated on HepG2 cells and in vivo tests, and the results indicated a decrease in hepatocytes apoptosis, liver and kidney histopathological lesions, oxidative stress, and inflammation as compared to non-laccase degraded AFB1. Moreover, the AFB1 degradation products significantly decreased the cytotoxicity and hepatotoxicity. This investigation provides innovative evidence on the effectiveness of laccase expressed in Saccharomyces cerevisiae in detoxifying AFB1.


Assuntos
Aflatoxina B1 , Trametes , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Lacase , Saccharomyces cerevisiae , Espectrometria de Massas em Tandem
10.
iScience ; 24(4): 102378, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33948559

RESUMO

Photobiocatalysis uses light to perform specific chemical transformations in a selective and efficient way. The intention is to couple a photoredox cycle with an enzyme performing multielectronic catalytic activities. Laccase, a robust multicopper oxidase, can be envisioned to use dioxygen as a clean electron sink when coupled to an oxidation photocatalyst. Here, we provide a detailed study of the coupling of a [Ru(bpy)3]2+ photosensitizer to laccase. We demonstrate that efficient laccase reduction requires an electron relay like methyl viologen. In the presence of dioxygen, electrons transiently stored in superoxide ions are scavenged by laccase to form water instead of H2O2. The net result is the photo accumulation of highly oxidizing [Ru(bpy)3]3+. This study provides ground for the use of laccase in tandem with a light-driven oxidative process and O2 as one-electron transfer relay and as four-electron substrate to be a sustainable final electron acceptor in a photocatalytic process.

11.
Langmuir ; 37(3): 1001-1011, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33433232

RESUMO

Carbon nanotube electrodes were modified with ferrocene and laccase using two different click reactions strategies and taking advantage of bifunctional dendrimers and cyclopeptides. Using diazonium functionalization and the efficiency of oxime ligation, the combination of both multiwalled carbon nanotube surfaces and modified dendrimers or cyclopeptides allows the access to a high surface coverage of ferrocene in the order of 50 nmol cm-2, a 50-fold increase compared to a classic click reaction without oxime ligation of these highly branched macromolecules. Furthermore, this original immobilization strategy allows the immobilization of mono- and bi-functionalized active multicopper enzymes, laccases, via copper(I)-catalyzed azide-alkyne cycloaddition. Electrochemical studies underline the high efficiency of the oxime-ligated dendrimers or cyclopeptides for the immobilization of redox entities on surfaces while being detrimental to electron tunneling with enzyme active sites despite controlled orientation.

12.
Chembiochem ; 22(6): 992-995, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33112043

RESUMO

Plant dirigent proteins (DIRs) control the stereoselectivity of the monolignol coniferyl alcohol radical coupling. The main mechanistic hypothesis on this chemo- and stereoselective reaction invokes a binding of coniferyl alcohol radical substrates in the dirigent protein active site so that only one enantiomeric form can be produced. We have studied the influence of the Arabidopsis thaliana AtDIR6 protein on the transient coniferyl alcohol radical by EPR. Herein, we show that AtDIR6 stabilizes coniferyl alcohol radicals prior to directing their coupling towards the formation of (-)-pinoresinol.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/análise , Fenóis/química , Proteínas de Arabidopsis/química , Domínio Catalítico , Oxirredução/efeitos da radiação , Estereoisomerismo , Raios Ultravioleta
13.
J Food Sci ; 85(4): 1353-1360, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32220140

RESUMO

Here, molecular docking simulation was used to predict and compare interactions between a recombinant Trametes sp. C30 laccase from Saccharomyces cerevisiae and four aflatoxins (AFB1 , AFB2 , AFG1 , and AFG2 ) as well as their degradation at a molecular level. The computational result of docking simulation indicates that each of the aflatoxins tested can interact with laccase with a binding ability of AFB1 >AFG2 >AFG1 >AFB2 . Simultaneously, it also demonstrated that aflatoxin B1 , B2 , G1 , G2 may interact near the T1 copper center of the enzyme through H-bonds and hydrophobic interactions with amino acid residues His481 and Asn288; His481; Asn288, and Asp230; His481 and Asn288. Biological degradation test was performed in vitro in the presence of a recombinant laccase. Degradation increased as incubation time increased from 12 to 60 hr and the maximum degradation obtained for AFB1 , AFB2 , AFG1 , and AFG2 was 90.33%, 74.23%, 85.24%, and 87.58%, respectively. Maximum degradation of aflatoxins was determined with a total activity 3 U laccase at 30 °C in 0.1 M phosphate buffer, pH 5.7 after 48-hr incubation. The experimental results are consistent with that of docking calculation on the biological degradation test of four aflatoxins by laccase. PRACTICAL APPLICATION: In this study, the degradation efficiencies of laccase for B and G series of aflatoxins were determined by computer simulation and verified by performing in vitro experiments. It can provide reference for rapid screening of aflatoxin degradation-related enzymes.


Assuntos
Aflatoxinas/metabolismo , Contaminação de Alimentos/análise , Lacase/metabolismo , Saccharomyces cerevisiae/enzimologia , Trametes/enzimologia , Aflatoxina B1/química , Aflatoxinas/análise , Aflatoxinas/química , Cromatografia Líquida de Alta Pressão/métodos , Simulação por Computador , Lacase/genética , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular
14.
Chemistry ; 26(21): 4798-4804, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-31999372

RESUMO

A maximization of a direct electron transfer (DET) between redox enzymes and electrodes can be obtained through the oriented immobilization of enzymes onto an electroactive surface. Here, a strategy for obtaining carbon nanotube (CNTs) based electrodes covalently modified with perfectly control-oriented fungal laccases is presented. Modelizations of the laccase-CNT interaction and of electron conduction pathways serve as a guide in choosing grafting positions. Homogeneous populations of alkyne-modified laccases are obtained through the reductive amination of a unique surface-accessible lysine residue selectively engineered near either one or the other of the two copper centers in enzyme variants. Immobilization of the site-specific alkynated enzymes is achieved by copper-catalyzed click reaction on azido-modified CNTs. A highly efficient reduction of O2 at low overpotential and catalytic current densities over -3 mA cm-2 are obtained by minimizing the distance from the electrode surface to the trinuclear cluster.


Assuntos
Cobre/química , Lacase/química , Nanotubos de Carbono/química , Oxigênio/química , Catálise , Química Click , Eletrodos , Elétrons , Enzimas Imobilizadas/química , Oxirredução
15.
Angew Chem Int Ed Engl ; 58(45): 16023-16027, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31553518

RESUMO

Using light energy and O2 for the direct chemical oxidation of organic substrates is a major challenge. A limitation is the use of sacrificial electron donors to activate O2 by reductive quenching of the photosensitizer, generating undesirable side products. A reversible electron acceptor, methyl viologen, can act as electron shuttle to oxidatively quench the photosensitizer, [Ru(bpy)3 ]2+ , generating the highly oxidized chromophore and the powerful reductant methyl-viologen radical MV+. . MV+. can then reduce an iron(III) catalyst to the iron(II) form and concomitantly O2 to O2.- in an aqueous medium to generate an active iron(III)-(hydro)peroxo species. The oxidized photosensitizer is reset to its ground state by oxidizing an alkene substrate to an alkenyl radical cation. Closing the loop, the reaction of the iron reactive intermediate with the substrate or its radical cation leads to the formation of two oxygenated compounds, the diol and the aldehyde following two different pathways.

16.
Mol Biotechnol ; 61(9): 650-662, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31201604

RESUMO

1-Aminocyclopropane carboxylic acid oxidase (ACCO) catalyzes the last step of ethylene biosynthesis in plants. Although some sets of structures have been described, there are remaining questions on the active conformation of ACCO and in particular, on the conformation and potential flexibility of the C-terminal part of the enzyme. Several techniques based on the introduction of a probe through chemical modification of amino acid residues have been developed for determining the conformation and dynamics of proteins. Cysteine residues are recognized as convenient targets for selective chemical modification of proteins, thanks to their relatively low abundance in protein sequences and to their well-mastered chemical reactivity. ACCOs have generally 3 or 4 cysteine residues in their sequences. By a combination of approaches including directed mutagenesis, activity screening on cell extracts, biophysical and biochemical characterization of purified enzymes, we evaluated the effect of native cysteine replacement and that of insertion of cysteines on the C-terminal part in tomato ACCO. Moreover, we have chosen to use paramagnetic labels targeting cysteine residues to monitor potential conformational changes by electron paramagnetic resonance (EPR). Given the level of conservation of the cysteines in ACCO from different plants, this work provides an essential basis for the use of cysteine as probe-anchoring residues.


Assuntos
Aminoácido Oxirredutases/química , Aminoácidos Cíclicos/química , Cisteína/química , Etilenos/química , Óxidos de Nitrogênio/química , Proteínas de Plantas/química , Solanum lycopersicum/enzimologia , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Substituição de Aminoácidos , Aminoácidos Cíclicos/metabolismo , Sítios de Ligação , Clonagem Molecular , Cisteína/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Etilenos/biossíntese , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Solanum lycopersicum/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Óxidos de Nitrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Marcadores de Spin , Especificidade por Substrato
17.
ACS Synth Biol ; 8(4): 833-843, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30897903

RESUMO

Fungal laccases are biotechnologically relevant enzymes that are capable of oxidizing a wide array of compounds, using oxygen from the air and releasing water as the only byproduct. The laccase structure is comprised of three cupredoxin domains sheltering two copper centers-the T1Cu site and the T2/T3 trinuclear Cu cluster-connected to each other through a highly conserved internal electron transfer pathway. As such, the generation of laccase chimeras with high sequence diversity from different orthologs is difficult to achieve without compromising protein functionality. Here, we have obtained a diverse family of functional chimeras showing increased thermostability from three fungal laccase orthologs with ∼70% protein sequence identity. Assisted by the high frequency of homologous DNA recombination in Saccharomyces cerevisiae, computationally selected SCHEMA-RASPP blocks were spliced and cloned in a one-pot transformation. As a result of this in vivo assembly, an enriched library of laccase chimeras was rapidly generated, with multiple recombination events simultaneously occurring between and within the SCHEMA blocks. The resulting library was screened at high temperature, identifying a collection of thermostable chimeras with considerable sequence diversity, which varied from their closest parent homologue by 46 amino acids on average. The most thermostable variant increased its half-life of thermal inactivation at 70 °C 5-fold (up to 108 min), whereas several chimeras also displayed improved stability at acidic pH. The two catalytic copper sites spanned different SCHEMA blocks, shedding light on the recognition of specific residues involved in substrate oxidation. In summary, this case-study, through comparison with previous laccase engineering studies, highlights the benefits of bringing together computationally guided recombination and in vivo shuffling as an invaluable strategy for laccase evolution, which can be translated to other enzyme systems.


Assuntos
Quimera/genética , Proteínas Fúngicas/genética , Lacase/genética , Recombinação Genética/genética , Saccharomyces cerevisiae/genética , Aminoácidos/genética , Domínio Catalítico/genética , Temperatura Alta , Engenharia de Proteínas/métodos
18.
Methods Enzymol ; 613: 17-61, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30509466

RESUMO

Fungal laccases are robust multicopper oxidoreductases. Perfectly amenable to synthetic evolution, the fungal laccase scaffold is a potential generic for the production of tailored biocatalysts, which, in principle, can be secreted at substantial levels in industrially relevant organisms. In this chapter, the strategy we have developed for the rapid production of hundreds of milligram of laccase variants is detailed. It is based on the use of two heterologous expression hosts: the yeast Saccharomyces cerevisiae for a rapid upstream screening and the fungus Aspergillus niger for downstream production. Methods for screening active and nonactive laccase variants, convenient setups for enzyme production in both organisms as well as a methodology for efficient purification of large amounts of recombinant enzymes are given. The general procedure for developing new materials for artificial catalysis is also described.


Assuntos
Oxirredutases/metabolismo , Proteínas Recombinantes/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredutases/genética , Proteínas Recombinantes/genética
19.
Saudi J Biol Sci ; 25(3): 545-550, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29686517

RESUMO

In the present study, we propose a green route to prepare poly(3-hydroxybutyrate) [(P(3HB)] grafted ethyl cellulose (EC) based green composites with novel characteristics through laccase-assisted grafting. P(3HB) was used as a side chain whereas, EC as a backbone material under ambient processing conditions. A novel laccase obtained from Aspergillus niger through its heterologous expression in Saccharomyces cerevisiae was used as a green catalyst for grafting purposes without the use of additional initiator and/or cross-linking agents. Subsequently, the resulting P(3HB)-g-EC composites were characterized using a range of analytical and imagining techniques. Fourier transform infrared spectroscopy (FT-IR) spectra showed an increase in the hydrogen-bonding type interactions between the side chains of P(3HB) and backbone material of EC. Evidently, X-ray diffraction (XRD) analysis revealed a decrease in the crystallinity of the P(3HB)-g-EC composites as compared to the pristine individual polymers. A homogeneous P(3HB) distribution was also achieved in case of the graft composite prepared in the presence of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) as a mediator along with laccase as compared to the composite prepared using pure laccase alone. A substantial improvement in the thermal and mechanical characteristics was observed for grafted composites up to the different extent as compared to the pristine counterparts. The hydrophobic/hydrophilic properties of the grafted composites were better than those of the pristine counterparts.

20.
Appl Microbiol Biotechnol ; 102(12): 5185-5196, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29687143

RESUMO

The chemical syntheses currently employed for industrial purposes, including in the manufacture of cosmetics, present limitations such as unwanted side reactions and the need for harsh chemical reaction conditions. In order to overcome these drawbacks, novel enzymes are developed to catalyze the targeted bioconversions. In the present study, a methodology for the construction and the automated screening of evolved variants library of a Type B feruloyl esterase from Myceliophthora thermophila (MtFae1a) was developed and applied to generation of 30,000 mutants and their screening for selecting the variants with higher activity than the wild-type enzyme. The library was generated by error-prone PCR of mtfae1a cDNA and expressed in Saccharomyces cerevisiae. Screening for extracellular enzymatic activity towards 4-nitrocatechol-1-yl ferulate, a new substrate developed ad hoc for high-throughput assays of feruloyl esterases, led to the selection of 30 improved enzyme variants. The best four variants and the wild-type MtFae1a were investigated in docking experiments with hydroxycinnamic acid esters using a model of 3D structure of MtFae1a. These variants were also used as biocatalysts in transesterification reactions leading to different target products in detergentless microemulsions and showed enhanced synthetic activities, although the screening strategy had been based on improved hydrolytic activity.


Assuntos
Antioxidantes/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Evolução Molecular , Sordariales/enzimologia , Sordariales/genética , Ligação Proteica , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA